Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Elementa-Science of the Anthropocene ; 10(1):20, 2022.
Article in English | English Web of Science | ID: covidwho-1883725

ABSTRACT

This study delves into the photochemical atmospheric changes reported globally during the pandemic by analyzing the change in emissions from mobile sources and the contribution of local meteorology to ozone (O-3) and particle formation in Bogota (Colombia), Santiago (Chile), and Sao Paulo (Brazil). The impact of mobility reductions (50%-80%) produced by the early coronavirus-imposed lockdown was assessed through high-resolution vehicular emission inventories, surface measurements, aerosol optical depth and size, and satellite observations of tropospheric nitrogen dioxide (NO2) columns. A generalized additive model (GAM) technique was also used to separate the local meteorology and urban patterns from other drivers relevant for O-3 and NO2 formation. Volatile organic compounds, nitrogen oxides (NOx), and fine particulate matter (PM2.5) decreased significantly due to motorized trip reductions. In situ nitrogen oxide median surface mixing ratios declined by 70%, 67%, and 67% in Bogota, Santiago, and Sao Paulo, respectively. NO2 column medians from satellite observations decreased by 40%, 35%, and 47%, respectively, which was consistent with the changes in mobility and surface mixing ratio reductions of 34%, 25%, and 34%. However, the ambient NO2 to NOx ratio increased, denoting a shift of the O-3 formation regime that led to a 51%, 36%, and 30% increase in the median O-3 surface mixing ratios in the 3 respective cities. O-3 showed high sensitivity to slight temperature changes during the pandemic lockdown period analyzed. However, the GAM results indicate that O-3 increases were mainly caused by emission changes. The lockdown led to an increase in the median of the maximum daily 8-h average O-3 of between 56% and 90% in these cities.

2.
Remote Sensing ; 14(7), 2022.
Article in English | Scopus | ID: covidwho-1792560

ABSTRACT

We present tropospheric nitrogen dioxide (NO2) changes observed by the Canadian Pandora measurement program in the Greater Toronto Area (GTA), Canada, and compare the results with surface NO2 concentrations measured via in situ instruments to assess the local emission changes during the first two years of the COVID‐19 pandemic. In the City of Toronto, the first lock-down period started on 15 March 2020, and continued until 24 June 2020. ECMWF Reanalysis v5 (ERA‐5) wind information was used to facilitate the data analysis and reveal detailed local emission changes from different areas of the City of Toronto. Evaluating seven years of Pandora observations, a clear NO2 reduction was found, especially from the more polluted downtown Toronto and airport areas (e.g., declined by 35% to 40% in 2020 compared to the 5‐year mean value from these areas) during the first two years of the pandemic. Compared to the sharp decline in NO2 emissions in 2020, the atmospheric NO2 levels in 2021 started to recover, but are still below the mean values in pre-pandemic time. For some sites, the pre‐pandemic NO2 local morning rush hour peak has still not returned in 2021, indicating a change in local traffic and commuter patterns. The long‐term (12 years) surface air quality record shows a statistically significant decline in NO2 with and without April to September 2020 observations (trend of −4.1%/yr and −3.9%/yr, respectively). Even considering this long‐term negative trend in NO2, the observed NO2 reduction (from both Pandora and in situ) in the early stage of the pandemic is still statistically significant. By implementing the new wind‐based validation method, the high‐resolution satellite instrument (TROPOMI) can also capture the local NO2 emission pattern changes to a good level of agreement with the ground‐based observations. The bias between ground‐based and satellite observations during the pandemic was found to have a positive shift (5–12%) than the bias during the pre‐pandemic period. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

3.
Journal of Geophysical Research. Atmospheres ; 126(24), 2021.
Article in English | ProQuest Central | ID: covidwho-1595324

ABSTRACT

Nitrogen oxides (NOx) are air pollutants critical to ozone and fine particle production in the troposphere. Here, we present fuel‐based emission inventories updated to 2018, including for mobile source engines using the Fuel‐based Inventory of Vehicle Emissions (FIVEs) and oil and gas production using the Fuel‐based Oil and Gas (FOG) inventory. The updated FIVE emissions are now consistent with the NEI17 estimates differing within 2% across the contiguous US (CONUS). Tropospheric NO2 columns modeled by the Weather Research and Forecasting with Chemistry model (WRF‐Chem) are compared with those observed by TROPOspheric Monitoring Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI) during the summer of 2018. Modeled NO2 columns show strong temporal and spatial correlations with TROPOMI (OMI), identified with biases of −3% (−21%) over CONUS, and +8% (−6%) over point sources plus urban regions. Taking account of the negative bias (∼20%) in early version of TROPOMI over polluted regions, WRF‐Chem shows good performance with updated FIVE and FOG emissions. Our model tends to under‐predict the tropospheric NO2 columns over background and rural regions (bias of −21% to −3%). Through model sensitivity analyses, we demonstrate the important roles of emissions from soils (11.7% average over CONUS), oil and gas production (4.1%), wildfires (10.6%), and lightning (2.3%) with greater contributions at regional scales. This work provides a roadmap for satellite‐based evaluations for emission updates from various sources.Alternate :Plain Language SummarySatellite observations of tropospheric NO2 columns provide important constraints on air pollutants from space, which have been widely used to validate the performance of atmospheric models. To gain better knowledge of the accuracy of the recently updated fuel‐based emissions inventory, we conducted NO2 assessments between a regional chemical transport model (Weather Research and Forecasting with Chemistry model, WRF‐Chem), with the TROPOspheric Monitoring Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI) over the contiguous United States. We find that model simulation results show strong spatial and temporal correlations with satellite observations across point sources, urban, oil and gas production, and rural regions. With updated emissions, our regional atmospheric model can reconcile with satellite retrievals differing from −3% (TROPOMI) to −21% (OMI) overall. Soils, oil and gas production, wildfires and lightning emissions can play key roles in regional air quality. This work provides an important baseline of a pre‐COVID year by which sharp changes in anthropogenic NOx emissions due to the pandemic can be assessed.

4.
Geophys Res Lett ; 47(19): e2020GL089252, 2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-1263467

ABSTRACT

Efforts to stem the spread of COVID-19 in China hinged on severe restrictions to human movement starting 23 January 2020 in Wuhan and subsequently to other provinces. Here, we quantify the ancillary impacts on air pollution and human health using inverse emissions estimates based on multiple satellite observations. We find that Chinese NOx emissions were reduced by 36% from early January to mid-February, with more than 80% of reductions occurring after their respective lockdown in most provinces. The reduced precursor emissions increased surface ozone by up to 16 ppb over northern China but decreased PM2.5 by up to 23 µg m-3 nationwide. Changes in human exposure are associated with about 2,100 more ozone-related and at least 60,000 fewer PM2.5-related morbidity incidences, primarily from asthma cases, thereby augmenting efforts to reduce hospital admissions and alleviate negative impacts from potential delayed treatments.

5.
Elementa ; 9(1), 2021.
Article in English | Scopus | ID: covidwho-1215179

ABSTRACT

The coronavirus-19 (COVID-19) pandemic led to government interventions to limit the spread of the disease which are unprecedented in recent history;for example, stay at home orders led to sudden decreases in atmospheric emissions from the transportation sector. In this review article, the current understanding of the influence of emission reductions on atmospheric pollutant concentrations and air quality is summarized for nitrogen dioxide (NO2), particulate matter (PM2.5), ozone (O3), ammonia, sulfur dioxide, black carbon, volatile organic compounds, and carbon monoxide (CO). In the first 7 months following the onset of the pandemic, more than 200 papers were accepted by peer-reviewed journals utilizing observations from ground-based and satellite instruments. Only about one-third of this literature incorporates a specific method for meteorological correction or normalization for comparing data from the lockdown period with prior reference observations despite the importance of doing so on the interpretation of results. We use the government stringency index (SI) as an indicator for the severity of lockdown measures and show how key air pollutants change as the SI increases.The observed decrease of NO2 with increasing SI is in general agreement with emission inventories that account for the lockdown. Other compounds such as O3, PM2.5, and CO are also broadly covered. Due to the importance of atmospheric chemistry on O3 and PM2.5 concentrations, their responses may not be linear with respect to primary pollutants. At most sites, we found O3 increased, whereas PM2.5 decreased slightly, with increasing SI. Changes of other compounds are found to be understudied. We highlight future research needs for utilizing the emerging data sets as a preview of a future state of the atmosphere in a world with targeted permanent reductions of emissions. Finally, we emphasize the need to account for the effects of meteorology, emission trends, and atmospheric chemistry when determining the lockdown effects on pollutant concentrations. Copyright: © 2021 The Author(s).

6.
Geophysical Research Letters ; 47(19), 2020.
Article in English | CAB Abstracts | ID: covidwho-1041769

ABSTRACT

During the COVID-19 lockdown (24 January-20 March) in China low air pollution levels were reported in the media as a consequence of reduced economic and social activities. Quantification of the pollution reduction is not straightforward due to effects of transport, meteorology, and chemistry. We have analyzed the NO<sub>x</sub> emission reductions calculated with an inverse algorithm applied to daily NO<sub>2</sub> observations from TROPOMI onboard the Copernicus Sentinel-5P satellite. This method allows the quantification of emission reductions per city and the analysis of emissions of maritime transport and of the energy sector separately. The reductions we found are 20-50% for cities, about 40% for power plants, and 15-40% for maritime transport depending on the region. The reduction in both emissions and concentrations shows a similar timeline consisting of a sharp reduction (34-50%) around the Spring festival and a slow recovery from mid-February to mid-March.

7.
Geophysical Research Letters ; n/a(n/a):e2020GL089912, 2020.
Article | Wiley | ID: covidwho-752554

ABSTRACT

Abstract During the COVID-19 lockdown (24 Jan to 20 March) in China low air pollution levels were reported in the media as a consequence of reduced economic and social activities. Quantification of the pollution reduction is not straightforward due to effects of transport, meteorology, and chemistry. We have analysed the NOx emission reductions calculated with an inverse algorithm applied to daily NO2 observations from TROPOMI onboard the Copernicus Sentinel-5P satellite. This method allows the quantification of emission reductions per city, and the analysis of emissions of maritime transport and of the energy sector separately. The reductions we found are 20 to 50% for cities, about 40% for power plants and 15 to 40% for maritime transport depending on the region. The reduction in both emissions and concentrations shows a similar timeline consisting of a sharp reduction (34 to 50%) around the Spring festival and a slow recovery from mid-February to mid-March.

8.
Geophys Res Lett ; 47(11): e2020GL087978, 2020 Jun 16.
Article in English | MEDLINE | ID: covidwho-209849

ABSTRACT

Spaceborne NO2 column observations from two high-resolution instruments, Tropospheric Monitoring Instrument (TROPOMI) on board Sentinel-5 Precursor and Ozone Monitoring Instrument (OMI) on Aura, reveal unprecedented NO2 decreases over China, South Korea, western Europe, and the United States as a result of public health measures enforced to contain the coronavirus disease outbreak (Covid-19) in January-April 2020. The average NO2 column drop over all Chinese cities amounts to -40% relative to the same period in 2019 and reaches up to a factor of ~2 at heavily hit cities, for example, Wuhan, Jinan, while the decreases in western Europe and the United States are also significant (-20% to -38%). In contrast with this, although Iran is also strongly affected by the disease, the observations do not show evidence of lower emissions, reflecting more limited health measures.

SELECTION OF CITATIONS
SEARCH DETAIL